Information sheet for the course Lab course II

University: Alexander Dubček University of Trenčín						
Faculty: VILA – Joint Glass Centre						
Course unit code: <i>LC_II</i>	Course unit title: Lab course II					
Type of course unit: compulsory						
Planned types, learning activities and teaching methods:						
Lab course: 5h						
Number of credits: 6						
Recommended semester: 2. semester						
Degree of study: II. (engineer)						
Course prerequisites: none						
Assesment methods:						
Partial evaluation: demostration of theoretical knowledge for LC II (e.g. short test) (2 points).						
individual active approach	for solving lab task (2 points),					
elaboration of the lab repo	rt (6 points).					
Final evaluation: the minimum 6 points are obligatory to gain the credit for the LC II						
Learning outcomes of the course unit:						
Student aquires knowledge of the material research and technology through the practical lab						
experience. Student gains knowledge and pract	ical skills required for preparation of the ceramic					
materials. He/she learns new experimental te	chniques and methods applied for preparation,					
characterization and testing of the inorganic materials. Based on acquired knowledge and skills						
student will be able to process, evaluate the experimental data to elaborate the accurate lab						
report.						
Course contents:						
1. General principals for the work in the che	mical laboratory (the chemical laboratory (ChL),					
materials used in the (ChL), safety at work).						
2. Characterization of the raw materials and preparation of homogenous mixture.						
3. Preparation of the raw compact ceramics using appropriate consolidation technique.						
4. Determination of the critical humidity of the ceramic material (DTA analysis).						
5. Sintering of selected ceramic material.						
6. Characterization of sintered samples: Density determination. open and closed porosity.						
7. Characterization of sintered samples: Preparation of the specimens for the microstructural						
analysis (sawing, grinding, polishing, etching).						
8. Characterization of sintered samples: Microstructural analysis (SEM).						
9. Characterization of sintered samples: Phase analysis (X-ray powder diffraction)						
10. Determination of the coefficient of the thermal expansion for selected ceramic materials.						
11. Determination of hardeness and the fracture toughness for selected ceramic materials by						
nanoindentation method.						
12 Corrosion test specimen preparation and performing of the corrosion test						
13. Corrosion test: evaluation of the results from the corrosion test.						
Recommended of required reading:						
F. Lofai: Teória a technológia spracovania keramických materiálov. AlumniPress Trnava 2010						
J.Hlaváč: Základy technologie silikátů. SNTL, Praha 1988. 432-496 s.						
J.Gažo: Anorganická chémia, Laboratórne cvičenia a výpočtv. Alfa Bratislava 1977						
J. Mailing: Technológia špeciálnych anorganických materiálov						
Language: Slovak						
Remarks:						

Evaluation history:							
А	В	С	D	Е	FX		
Lectures: Ing. Dagmar Galusková, PhD., Ing. Jozef Kraxner, PhD., PhD student							
Last modification: 31. 1. 2014							
Supervisor:							